Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 103: 105070, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564827

RESUMO

BACKGROUND: Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS: Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS: Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION: Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING: This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).

2.
Adv Sci (Weinh) ; 10(21): e2300961, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114845

RESUMO

Peritoneal metastasis (PM) is the mostcommon form of distant metastasis and one of the leading causes of death in gastriccancer (GC). For locally advanced GC, clinical guidelines recommend peritoneal lavage cytology for intraoperative PM detection. Unfortunately, current peritoneal lavage cytology is limited by low sensitivity (<60%). Here the authors established the stimulated Raman molecular cytology (SRMC), a chemical microscopy-based intelligent cytology. The authors firstly imaged 53 951 exfoliated cells in ascites obtained from 80 GC patients (27 PM positive, 53 PM negative). Then, the authors revealed 12 single cell features of morphology and composition that are significantly different between PM positive and negative specimens, including cellular area, lipid protein ratio, etc. Importantly, the authors developed a single cell phenotyping algorithm to further transform the above raw features to feature matrix. Such matrix is crucial to identify the significant marker cell cluster, the divergence of which is finally used to differentiate the PM positive and negative. Compared with histopathology, the gold standard of PM detection, their SRMC method could reach 81.5% sensitivity, 84.9% specificity, and the AUC of 0.85, within 20 minutes for each patient. Together, their SRMC method shows great potential for accurate and rapid detection of PM from GC.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Neoplasias Peritoneais/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Lavagem Peritoneal/métodos , Microscopia , Inteligência Artificial
3.
Langmuir ; 37(44): 12802-12811, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34698494

RESUMO

Cu0.27Co2.73O4 nanooctahedrons enclosed by polar {111} planes have been prepared through the selective adsorption of Cl-. Hydrogenation has been successfully used to enhance the responses of the Cu0.27Co2.73O4 nanooctahedron sensors to acetone, ethanol, and n-butylamine. The enhancement of the response results from the increase in the number of 3-coordinated Co/Cu atoms (Co3c/Cu3c) at the (111) plane of Cu0.27Co2.73O4 through removing O-H groups and Cl- ions at the surface by hydrogenation. The Co3c/Cu3c atoms on the (111) plane of Cu0.27Co2.73O4 are considered to function as the gas response active centers. These Co3c/Cu3c active atoms have three functions: generating electrons, adsorbing oxygen from air, and catalyzing the sensing reactions. The hydrogenation polar surface approach can be applied to improve the performances of other sensing materials. Such sensing mechanisms of the Co3c/Cu3c unsaturated atoms as the active centers can be conducive to understanding the gas-sensing essence and the development of sensing materials with high performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...